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Outline

" Deep RL —Value methods
" Deep RL — Policy methods



Function approximation for value and policy
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" What if we use deep neural networks directly to approximate
these functions?



End-to-end reinforcement learning
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Deep RL

= Deep RL enables RL algorithms to solve complex tasks in an end-to-end manner.

Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-1.pdf



Interaction
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" New challenges when we combine deep learning with RL?

Value functions and policies become deep neural networks

High-dimensional parameter space
Difficult to train stably

Prone to overfitting

Requires large amounts of data
High computational cost

CPU-GPU workload balance



Value methods: DQN

" Deep Q-Network (DQN)

= Uses a deep neural network to approximate Q(s,a)
= —> Replaces the Q-table with a parameterized function for scalability

" The network takes state s as input, outputs Q-values for all actions a simultaneously
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Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.



DQN (cont.)

" |Intuition: Use a deep neural network to approximate Q(s,a)

" [nstability arises in the learning process

= Samples {(s¢, a¢, S¢+1, 7¢) } are collected sequentially and do not satisfy the i.i.d.
assumption

" Frequent updates of Q(s,a) cause instability

" Solutions: Experience replay

= Store transitions e; = (S, s, S¢4+1,73) in a replay buffer D
Sample uniformly from D to reduce sample correlation

* Dual network architecture: Use an evaluation network and a target
network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Target network

* Target network Qg-(s, a)

* Maintains a copy of the Q-network with older parameters 6~

 Parameters 8~ are updated periodically (every C steps) to match the evaluation

network

= Loss Function (at iteration i)
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DQN training procedure

" Collect transitions using an e-greedy exploration policy

= Store {(s¢, ¢, S¢4+1,7+) } into the replay buffer
= Sample a minibatch of k transitions from the buffer
" Update networks:

= Compute the target using the sampled transitions
* Update the evaluation network Qg

* Every C steps, synchronize the target network Qg- with the evaluation
network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



DQN performance in Atari games
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“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Overestimation in Q-Learning

= Q-function overestimation
* The target value is computed as: Y¢ =1 TV rr:la,lx Qo (s¢+1,a’)

" The max operator leads to increasingly larger Q-values, potentially
exceeding the true value

= Cause of overestimation
{9251( Qo' (St+1,a’) = Qgr(S¢4q,arg HE}X Qo' (St+1,a"))

" The chosen action might be overestimated due to Q-function error



Degree of overestimation in DQN

= Overestimation increases with the number of candidate actions

e Bl max, Q(s,a) — Vi(s)
1.0 mm Q(s,argmax,Q(s,a)) — Vi(s)
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" A separately trained Q’-function is used as a reference



Overestimation example in DQN
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Setup: The x-axis represents states, and each plot includes 10 candidate actions. The purple curve denotes the true Q-
value function, the green dots are training data points, and the green lines are the fitted Q-value estimates.

The middle column shows the estimated values Q; (s, a) for all 10 actions. After applying the max operator, the results
deviate significantly from the true values Q. (s, a).



Double DQN

" Uses two separate networks for action selection and value
estimation, respectively.

DQN y: =1 +vQo(St+1,ar8 max Qo(St+1,a'))
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Double DQN Y: =1t + V¥

(5t+1,2rg max Qp (5e41,a")

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)



Experimental results in the Atari environment
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Dueling DQN

= Assume the action-value function follows a distribution:

Q(s,a) ~N(u,0)

= Then: V(s) =E[Q(s,a)] = pu Q(s,a) = u+|e(s,a)

= How do we describe £(s,a)?

£(s,a) =0Q(s,a) —V(s)

" This term is also known as the Advantage function

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)



= Advantage function  A7(s

Q(s,a;0,a,p)

Q(s,a;0,a,p)

=V(s;0,B) +

Dueling DQN (cont.)

Q™ (s,

,a) = Q"(s,a) — V(s)

a) = E[R;|s; = s,a; = a, ]

VT (s) = Eq-n(s) Q" (s, a)]

= Different forms of advantage aggregation

(A(s,a;0,a) — rr}szﬁﬂA(S a’;0,a))
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Advantages of Dueling DQN

" Effective for states weakly correlated with actions
" More efficient learning of the state-value function

" The value stream V(s) is shared across all actions, allowing the network
to generalize better across actions

VALUE ADVANTAGE

*The value stream allows the agent to evaluate how good a
state is without considering the specific action taken.

saliency maps

VALUE ADVANTAGE

*The advantage stream emphasizes action-specific importance:
for instance, it can learn to focus more when an obstacle (e.g.,
a car) appears in front of the agent, thereby guiding more
precise action selection.



Experimental results in the Atari environment |
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Experimental results in the Atari environment ||
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Deep RL — Policy-based methods
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Review: The policy gradient theorem

" The policy gradient theorem generalizes the derivation of
likelihood ratios to the multi-step MDP setting.

" |t replaces the immediate reward r; with the expected long-term

return Q™ (s, a).
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Policy Gradient in a Single-Step MDP

= Consider a simple single-step Markov Decision Process (MDP)

= The initial state is drawn from a distribution: s ~ d(s)
= The process terminates after one action, yielding a reward 7,

= Expected Value of the Policy

J©) = Brylr] = )" d(s) ) mp(als)rsg
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Policy network gradient

" For stochastic policies, the probability of selecting an action is

typically modeled using a softmax function:
ef@(sla)
Za, efG(S'a,)

mg(als) =

" fo(s,a)isascore function (e.g., logits) for the state-action pair
* Parameterized by 0, often realized via a neural network

" Gradient of the log-form

dlogmg(als) _ dfe (s, a) Z ofo s,a’ afg(s a'")
90 06 Z ,efe(S a’)

_Of(sa) o 0fo(s, a’)
~ 99 erme@lD | g



Policy network gradient (cont.)

" Gradient of the log-form

dlogmg(als) dfe(s, a) " dfe(s,a’)
0 90 a'~mp(@'ls) [T g9
" Gradient of the policy network
d](0) dlogmg(als)
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Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= Objective: Minimize the TD error
1
J(6) = Ey |5 (e +¥ max Qg (s041,@) = Qo (50,20’

dj(6)
6 « O—QW

aQG (Sr Cl)
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Comparison: DQN v.s. Policy gradient

= Q-Learning:
» Learns a Q-value function Qg (s, a) parameterized by 0

= QObjective: Minimize the TD error
" Policy gradient
" Learns a policy mg(a | s) directly, parameterized by 6

= Objective: Maximize the expected return directly
max J(0) = Ep,[Q7(s, )]

9] () dlogry (als) -
— e
Y 0+ aE,, PY: Q"9(s,a)
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