STA303: Artificial Intelligence

Deep Reinforcement Learning

Fang Kong

https://fangkongx.github.io/

Part of slide credits: Weinan Zhang

https://fangkongx.github.io/

Outline

" Deep RL —Value methods
" Deep RL — Policy methods

Function approximation for value and policy

Vo (s) Qo (s, a) mg(als)

A R S

T T

S S

" What if we use deep neural networks directly to approximate
these functions?

End-to-end reinforcement learning

_ B8 mid-level features _ classifier
Y (c.c. DPM)

III
Felzenszwalb ‘08

Traditional com r vision r i
aditional computer visio (e.g. SVM] §

Deep learning

R ? linear policy -
" & orvalue func.

Traditional RL

Deep RL

= Deep RL enables RL algorithms to solve complex tasks in an end-to-end manner.

Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-1.pdf

Interaction

Agent H

o — — — — — —

—————— —

——— — — —

—— — — — ——

" New challenges when we combine deep learning with RL?

Value functions and policies become deep neural networks

High-dimensional parameter space
Difficult to train stably

Prone to overfitting

Requires large amounts of data
High computational cost

CPU-GPU workload balance

Value methods: DQN

" Deep Q-Network (DQN)

= Uses a deep neural network to approximate Q(s,a)
= —> Replaces the Q-table with a parameterized function for scalability

" The network takes state s as input, outputs Q-values for all actions a simultaneously

Convolution Convolution Fully connected Fully connected
w A s w

of | B /m

ot | /s L\
B-oeom -0 :o:

o | O

of] | E \m

¢

AR vy]
[BX BN BN BN BY BX B ~ €« ¥ £
HEBEEERERACRAREAR

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.

DQN (cont.)

" |Intuition: Use a deep neural network to approximate Q(s,a)

" [nstability arises in the learning process

= Samples {(s¢, a¢, S¢+1, 7¢) } are collected sequentially and do not satisfy the i.i.d.
assumption

" Frequent updates of Q(s,a) cause instability

" Solutions: Experience replay

= Store transitions e; = (S, s, S¢4+1,73) in a replay buffer D
Sample uniformly from D to reduce sample correlation

* Dual network architecture: Use an evaluation network and a target
network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Target network

* Target network Qg-(s, a)

* Maintains a copy of the Q-network with older parameters 6~

 Parameters 8~ are updated periodically (every C steps) to match the evaluation

network

= Loss Function (at iteration i)

2

Li(6) = Esqapsesarope-n |3 @t + 7 max Qo (ses1,@") — Qg (5, a)Y?]

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavuke

=+

—

p

=

=

oglu, Silver et al. (201

06

DQN training procedure

" Collect transitions using an e-greedy exploration policy

= Store {(s¢, ¢, S¢4+1,7+) } into the replay buffer
= Sample a minibatch of k transitions from the buffer
" Update networks:

= Compute the target using the sampled transitions
* Update the evaluation network Qg

* Every C steps, synchronize the target network Qg- with the evaluation
network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

DQN performance in Atari games

Video Pinball

Star Gunner

Atlantis
Crazy Climber

Demon Attack
Name This Game

%'l

Road Runner
James Bond normalized performance

Pong
Space Invaders

DQN score —random play score

"

human score — random play score

;

Tutankham
Kung-Fu Master
Freeway

Time Pilot

|

Fishing Derby
Up and Down
Ice Hockey
Q'bert

fl

At human-level or above

Below human-level
Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

F!!ili!!*ilil

Seaquest

Double Dunk
Bowling

Ms. Pac-Man
Asteroids

Frostbite

Gravitar

Private Eye
ontezuma's Revenge

=
2
*

e The performance of DQN is
Box [oon | normalized with respect to a
o " professional human games

0 100 20 300 40 500 600 1000 ss0w tester (thatis, 100% level)

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)

Overestimation in Q-Learning

= Q-function overestimation
* The target value is computed as: Y¢ =1 TV rr:la,lx Qo (s¢+1,a’)

" The max operator leads to increasingly larger Q-values, potentially
exceeding the true value

= Cause of overestimation
{9251(Qo' (St+1,a’) = Qgr(S¢4q,arg HE}X Qo' (St+1,a"))

" The chosen action might be overestimated due to Q-function error

Degree of overestimation in DQN

= Overestimation increases with the number of candidate actions

e Bl max, Q(s,a) — Vi(s)
1.0 mm Q(s,argmax,Q(s,a)) — Vi(s)
2. %

error

0.0 HI.

SEE G N =
<,
g

number of actions

" A separately trained Q’-function is used as a reference

Overestimation example in DQN

True value and an estimate All estimates and max Bias as function of state Average error
9 > 0\ (s — max., O.(s.
I \maxaQ:(s,a) o 1 0t(8, @) — max, .($,a) +0.61
0! o ¥ \\~ Y =\ 0 Y
\‘i-ffﬁé/ \\ #1” 1 1))
—2 —2
" - max, Qt(S,G) 1 max, (J¢+(s,a) — max, Q.(s,a) L0.47
“~ 27 N\ P
0 0 RS - - - D \
4 & PR
Qt(s,a) I v max, Q:(s,a)l
¢ - -
2 2 LNV SN | .35
"' v ,,u?/ o \s: v
. 08 0 EXsaiad— - ek S
Q.(s.a) =
-6 -4 =2 0 2 4 6 -6 -4 =2 0 2
state state

Setup: The x-axis represents states, and each plot includes 10 candidate actions. The purple curve denotes the true Q-
value function, the green dots are training data points, and the green lines are the fitted Q-value estimates.

The middle column shows the estimated values Q; (s, a) for all 10 actions. After applying the max operator, the results
deviate significantly from the true values Q. (s, a).

Double DQN

" Uses two separate networks for action selection and value
estimation, respectively.

DQN y: =1 +vQo(St+1,ar8 max Qo(St+1,a'))

“~

Double DQN Y: =1t + V¥

(5t+1,2rg max Qp (5e41,a")

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)

Experimental results in the Atari environment

Video Pinball
Atlantis

= VValue estimation error

Gopher

Space Invaders Time Pilot Zaxxon s

Road Runner
= : Krull
QN estimate Crazy Climber

oo

(o))

Double DQN estimate James Bond]

Double DQN true value = s
() 2 DQ(N ol \'HI]W ue N;\-\nl:-d'll"]h;,:f(\;\;:.‘:.(-

Time Pilot
0 50 100 150 200 0O 50 100 150 200 O 50 100 150 200 Bank Heist (o

Training steps (in millions) Freeway
Pong

N

Value estimates

Fishing Derby
Tennis

= Atari game performance sy B

no ops human starts HER.O. o=
DQN DDQN | DQN DDQN DDQN Seaquest f
(tuned) ,XSkiing‘.l"l'(nlbi[(-

Median | 93% 115% | 47% 88% 117% Centipeds
Alien B8
Mean 241 % 330% l 22% 273% 475% ++Yars Revenges»
Amidar B

Ms. Pacman
. ++Pitfalles
normalized performance W
\\-nlu,;(-

Gravitar

DQN score — random play score L S
= ++Solaris++
human score — random play score '

H\!HI‘A”

EEE Double DOQN (tuned)
[Double DQN
I DON

Dueling DQN

= Assume the action-value function follows a distribution:

Q(s,a) ~N(u,0)

= Then: V(s) =E[Q(s,a)] = pu Q(s,a) = u+|e(s,a)

= How do we describe £(s,a)?

£(s,a) =0Q(s,a) —V(s)

" This term is also known as the Advantage function

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)

= Advantage function A7(s

Q(s,a;0,a,p)

Q(s,a;0,a,p)

=V(s;0,B) +

Dueling DQN (cont.)

Q™ (s,

,a) = Q"(s,a) — V(s)

a) = E[R;|s; = s,a; = a,]

VT (s) = Eq-n(s) Q" (s, a)]

= Different forms of advantage aggregation

(A(s,a;0,a) — rr}szﬁﬂA(S a’;0,a))

=V(s;0,p) +

(A(s,a;0,a) — |A|z A(s,a’;0,a))

Network structure

/ Q-value

Value

|\ X8\

N /
v s
’
4 ~
’
’
’ ’
’
. .
¢
s
s
’
’

Advantage function

Advantages of Dueling DQN

" Effective for states weakly correlated with actions
" More efficient learning of the state-value function

" The value stream V(s) is shared across all actions, allowing the network
to generalize better across actions

VALUE ADVANTAGE

*The value stream allows the agent to evaluate how good a
state is without considering the specific action taken.

saliency maps

VALUE ADVANTAGE

*The advantage stream emphasizes action-specific importance:
for instance, it can learn to focus more when an obstacle (e.g.,
a car) appears in front of the agent, thereby guiding more
precise action selection.

Experimental results in the Atari environment |

Atlantis - ., 206.67%
Tennis 180.00%
Space Invaders - 164.11%
Up and Down I, ©7.90%
Phoenix - [R R
Enduro I 86.35%
Chopper Command I G 2.20%
Seaquest - I C0.51%
Yars' Reven%e T 73.63%
Frostbite I 70.02%
Time Pilot I 0. 73%
Asterix - I G3.179%
Road Runner . 5 7.57%
Bank Heist - I 57.19%
Krull I 55 85%
Ms. Pac-Man I 5:.76%
Star Gunner I 12.92%
Surround I 14.24%
Double Dunk - I 42.75%
River Raid [BEEREED
Venture . 33.60%
~ Amidar B 31.40%
Fishing Derbﬂy(. B 28.82% .
Zh0n —
X 459 .
Ice Hockey — R | Compared with DQN
Crazy Climber B 24.68%
entipede - B 21.68%
Defender I 21.18%
Name This Game - Bl 16.28%
Battle Zone Bl 15.65%
Kung-Fu Master - Bl 15.56%
Kangaroo Bl 14.39%
Alien - B 10.34%
Berzerk M 9.86%
Boxing W 8.52%
Gopher B 6.02%
~ Gravitar BN 5.54%
\[/)wzard %fttWokr . B 5.24% l d f
emon ac B 4.78%
el B 451% normalized periormance
H.SRBAO. 1 231%
iing - | 1.29% !
Pitfall! 0.45% — -
Robotank e ~agent score — baseline score
ong | 0.24% —
fontezuma's Revenge - | 0.00% L .
Private tye | $oe max{human score, baseline score} — random play score
Tutankham - § -3.38% \
James Bond 1 -3.42%
Solaris M -7.37%
Beam Rider o 9.71%
Assault - B -14.93%
~ Breakout -17.56%
Video Pinball - I G5.31%

Freeway I -100.00%

Experimental results in the Atari environment ||

Asterix - 1097.02%
Space Invaders 457.93%
Phoenix - 281.56%
: Gopher I, 223.03%
Wizard Of War - I 178.13%
Up and Down - I 113.47%
Yars' Revenge - I 113.16%
Star Gunner - I 05 .69%
Berzerk I G.91%
~ Frostbite - I 70.29%
Video Pinball I G 97
Chopper Command - B 55.87%
Assault . 51.07%
Bank Heist - I 43.11%
River Raid I 38.56%
Defender - B 35.33%
Name This Game - I 33.09%
Zaxxon . 32.74%
Centipede - N 32.48%
Beam Rider I 29.94%
Amidar - I 24.98%
Kung-Fu Master Bl 22.36%
utankham - B 21.38%
Crazy Climber W 16.16%
B ttlO'ZBert . =1115:66u,-;. !
attle Zone - % L H
Atiantis 8 116w - Compared with Double DQN
Enduro - N 10.20% |
Krull N 7.95%
Road Runner - B 7.89%
Pitfall! 1533%
Boxing - 13.46%
Demon Attack | 1.44%
Fishing Derby - | 1.37%
) Pong | 0.73%
Private Eye - | 0.01%
Montezuma's Revenge - | 0.00%
Tennis | 0.00% ,
\éentlure : ngw . i
Freeway 12 08% normalized performance
Asterods e
HERD. s agent score — baseline score
Gravitar B-9.77% p—
Ice Hockey M -13.60% [.
Time Pilot - 2021% max{human score, baseline score} — random play score
Solaris I 37.65%
Surround - B -40.74% E
Ms. Pac-Man I -45.03%
Robotank - I -58.11%
Seaquest I 60.56%
Skiin I -7 7.99%
Double Dunk - I -63.56%
James Bond - N -54.70%
Kangaroo I 69.22%

Deep RL — Policy-based methods

22

Review: The policy gradient theorem

" The policy gradient theorem generalizes the derivation of
likelihood ratios to the multi-step MDP setting.

" |t replaces the immediate reward r; with the expected long-term

return Q™ (s, a).

;;;;;;;;;;;

Policy Gradient in a Single-Step MDP

= Consider a simple single-step Markov Decision Process (MDP)

= The initial state is drawn from a distribution: s ~ d(s)
= The process terminates after one action, yielding a reward 7,

= Expected Value of the Policy

J©) = Brylr] =)" d(s)) mp(als)rsg

SES acA

6](9) Zd()zane(aIS) e

SES acA

Policy network gradient

" For stochastic policies, the probability of selecting an action is

typically modeled using a softmax function:
ef@(sla)
Za, efG(S'a,)

mg(als) =

" fo(s,a)isascore function (e.g., logits) for the state-action pair
* Parameterized by 0, often realized via a neural network

" Gradient of the log-form

dlogmg(als) _ dfe (s, a) Z ofo s,a’ afg(s a'")
90 06 Z ,efe(S a’)

_Of(sa) o 0fo(s, a’)
~ 99 erme@lD | g

Policy network gradient (cont.)

" Gradient of the log-form

dlogmg(als) dfe(s, a) " dfe(s,a’)
0 90 a'~mp(@'ls) [T g9
" Gradient of the policy network
d](0) dlogmg(als)
0 ~Fr| a5 000 “)]

(0fg(s,) fo(s, @)\ \n
=]En9 (669 _Ea'~n9(a’|s)[060])Q B(S,a)]

) \
1 1

Back propagation Back propagation

Comparison: DQN v.s. Policy gradient

= Q-Learning:
" Learns a Q-value function Qg (s, a) parameterized by 0

= Objective: Minimize the TD error
1
J(6) = Ey |5 (e +¥ max Qg (s041,@) = Qo (50,20’

dj(6)
6 « O—QW

aQG (Sr Cl)

= 0+ aE, [(rt +y max Qpr(se41,0) — Qo (5 @)) —5,
a

Comparison: DQN v.s. Policy gradient

= Q-Learning:
» Learns a Q-value function Qg (s, a) parameterized by 0

= QObjective: Minimize the TD error
" Policy gradient
" Learns a policy mg(a | s) directly, parameterized by 6

= Objective: Maximize the expected return directly
max J(0) = Ep,[Q7(s,)]

9] () dlogry (als) -
— e
Y 0+ aE,, PY: Q"9(s,a)

0 <0+«

