

南方科技大学

STA303: Artificial Intelligence

Deep Reinforcement Learning

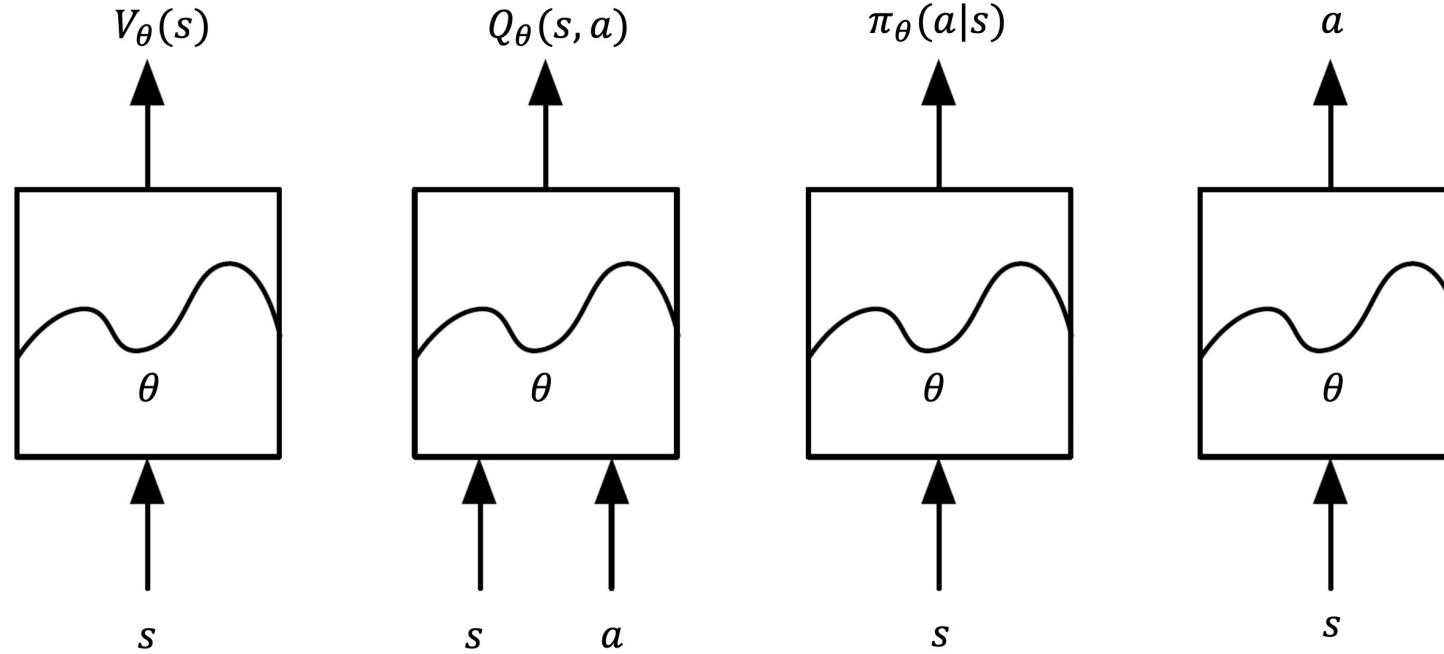
Fang Kong

<https://fangkongx.github.io/>

Outline

- Deep RL – Value methods
- Deep RL – Policy methods

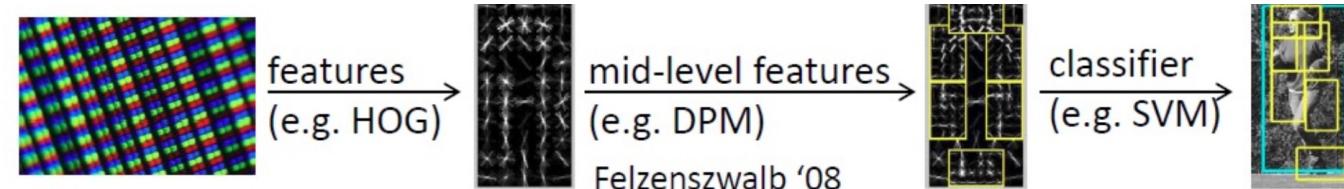
Function approximation for value and policy



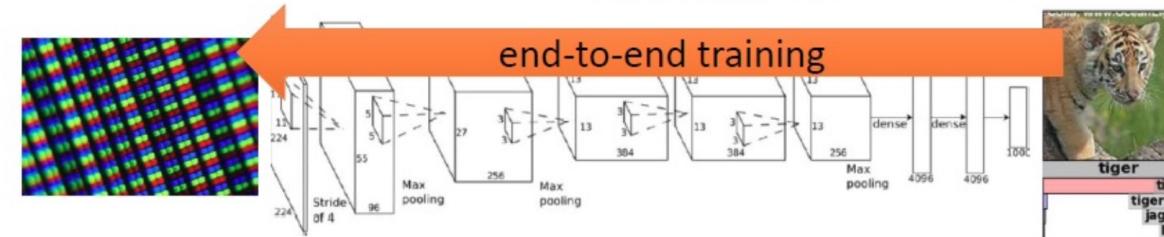
- What if we use deep neural networks directly to approximate these functions?

End-to-end reinforcement learning

Traditional computer vision

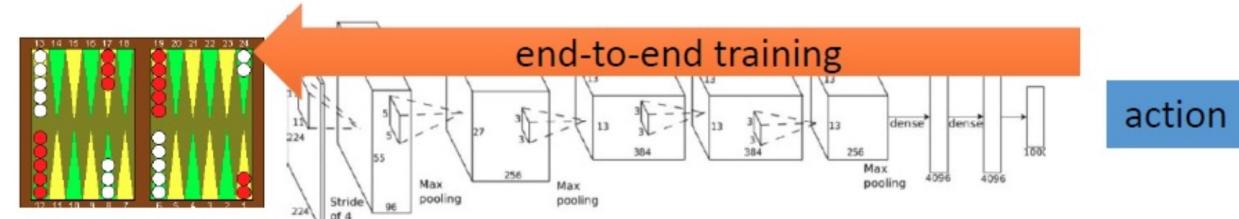


Deep learning



Traditional RL

Deep RL



- Deep RL enables RL algorithms to solve complex tasks in an end-to-end manner.

Deep RL

■ New challenges when we combine deep learning with RL?

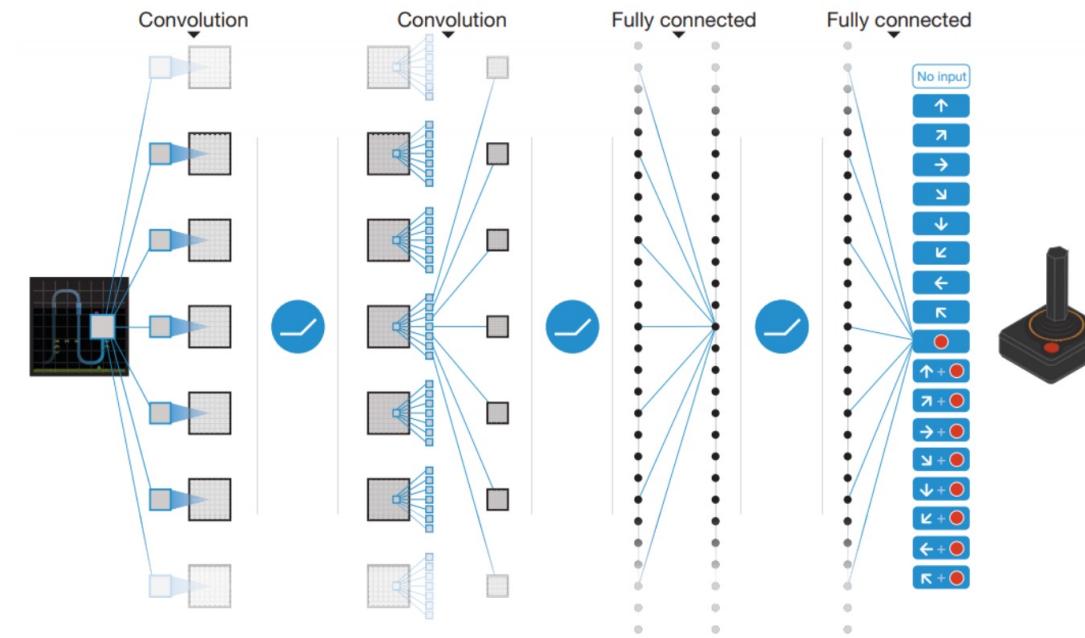
- Value functions and policies become deep neural networks
- High-dimensional parameter space
- Difficult to train stably
- Prone to overfitting
- Requires large amounts of data
- High computational cost
- CPU-GPU workload balance

Value methods: DQN

-

Deep Q-Network (DQN)

- Uses a deep neural network to approximate $Q(s, a)$
 - → Replaces the Q-table with a parameterized function for scalability
- The network takes state s as input, outputs Q-values for all actions a simultaneously



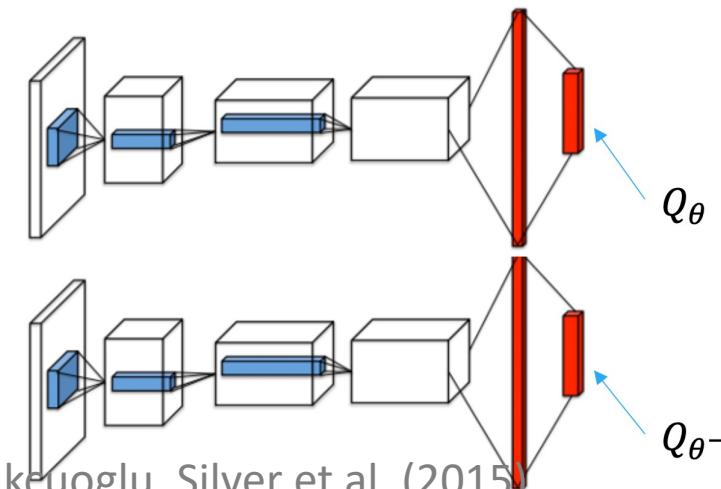
DQN (cont.)

- Intuition: Use a deep neural network to approximate $Q(s, a)$
 - Instability arises in the learning process
 - Samples $\{(s_t, a_t, s_{t+1}, r_t)\}$ are collected sequentially and do not satisfy the i.i.d. assumption
 - Frequent updates of $Q(s, a)$ cause instability
- Solutions: Experience replay
 - Store transitions $e_t = (s_t, a_t, s_{t+1}, r_t)$ in a replay buffer D
 - Sample uniformly from D to reduce sample correlation
 - Dual network architecture: Use an evaluation network and a target network for improved stability

Target network

- Target network $Q_{\theta^-}(s, a)$
 - Maintains a copy of the Q-network with older parameters θ^-
 - Parameters θ^- are updated periodically (every C steps) to match the evaluation network
- Loss Function (at iteration i)

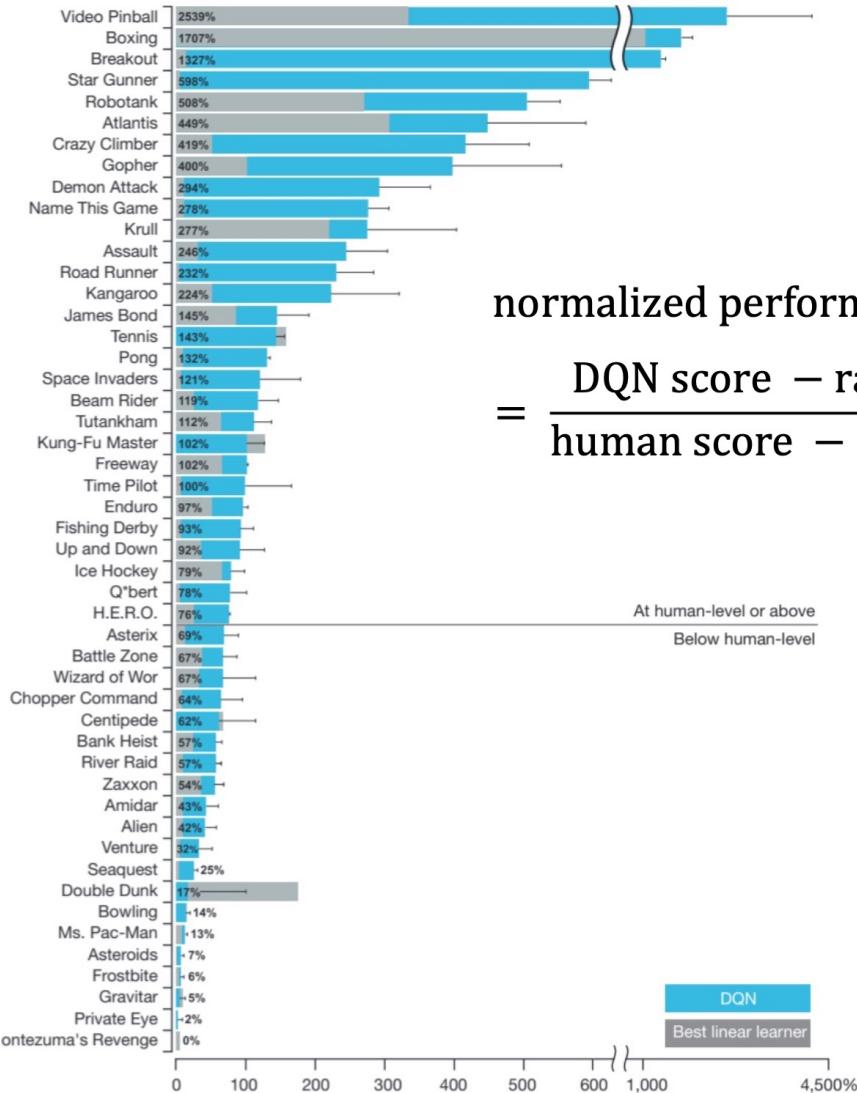
$$L_i(\theta_i) = \mathbb{E}_{s_t, a_t, s_{t+1}, r_t, p_t \sim D} \left[\frac{1}{2} \omega_t (r_t + \gamma \max_{a'} Q_{\theta_i^-}(s_{t+1}, a') - Q_{\theta_i}(s_t, a_t))^2 \right]$$



DQN training procedure

- Collect transitions using an ϵ -greedy exploration policy
 - Store $\{(s_t, a_t, s_{t+1}, r_t)\}$ into the replay buffer
- Sample a minibatch of k transitions from the buffer
- Update networks:
 - Compute the target using the sampled transitions
 - Update the evaluation network Q_θ
 - Every C steps, synchronize the target network Q_{θ^-} with the evaluation network

DQN performance in Atari games



The performance of DQN is normalized with respect to a professional human games tester (that is, 100% level)

Overestimation in Q-Learning

- **Q-function overestimation**

- The target value is computed as: $y_t = r_t + \gamma \max_{a'} Q_\theta(s_{t+1}, a')$
- The max operator leads to increasingly larger Q-values, potentially exceeding the true value

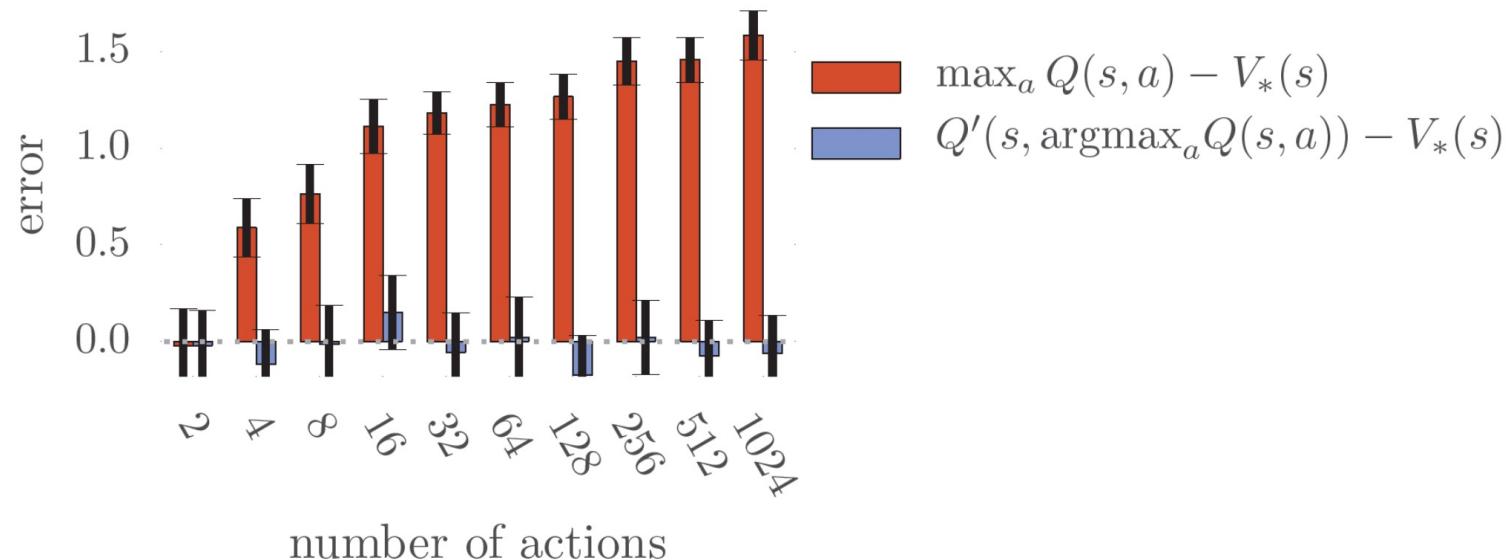
- **Cause of overestimation**

$$\max_{a' \in A} Q_{\theta'}(s_{t+1}, a') = Q_{\theta'}(s_{t+1}, \arg \max_{a'} Q_{\theta'}(s_{t+1}, a'))$$

- The chosen action might be overestimated due to Q-function error

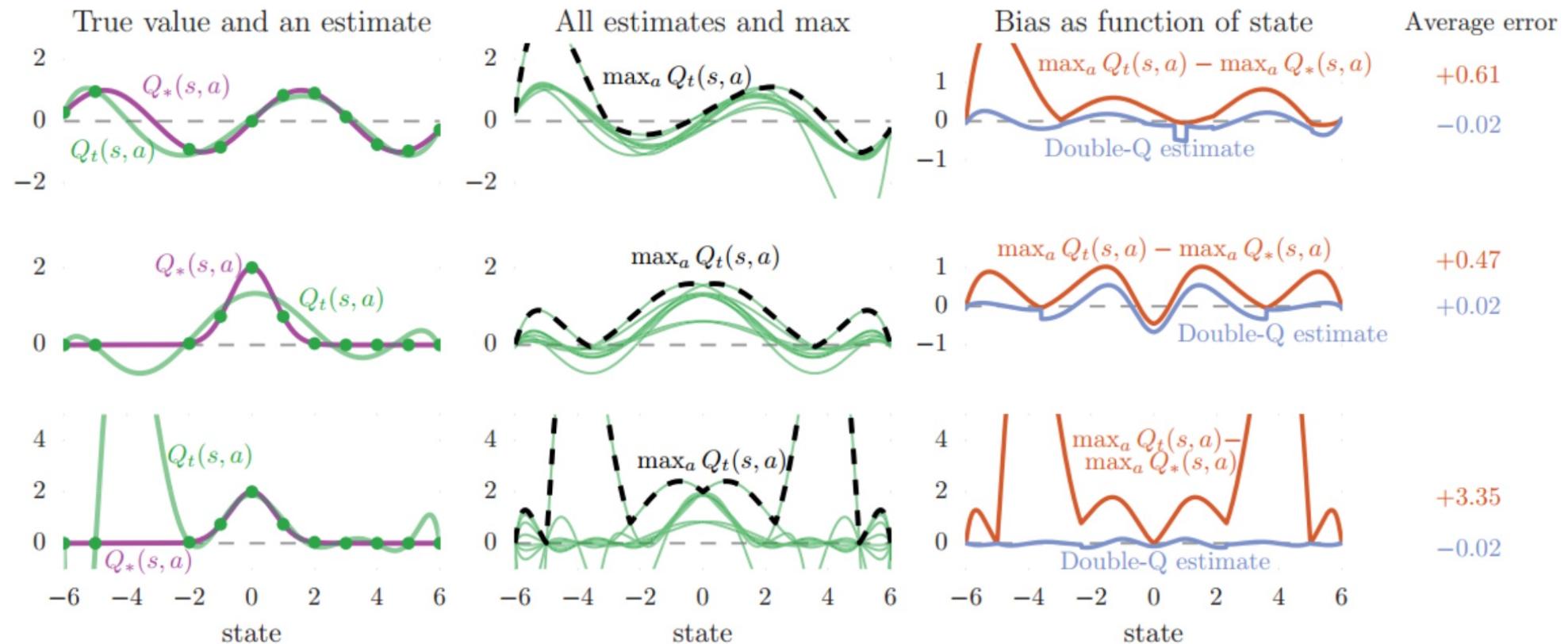
Degree of overestimation in DQN

- Overestimation increases with the number of candidate actions



- A separately trained Q' -function is used as a reference

Overestimation example in DQN



- Setup: The x-axis represents states, and each plot includes 10 candidate actions. The purple curve denotes the true Q-value function, the green dots are training data points, and the green lines are the fitted Q-value estimates.
- The middle column shows the estimated values $Q_t(s, a)$ for all 10 actions. After applying the max operator, the results deviate significantly from the true values $Q_*(s, a)$.

Double DQN

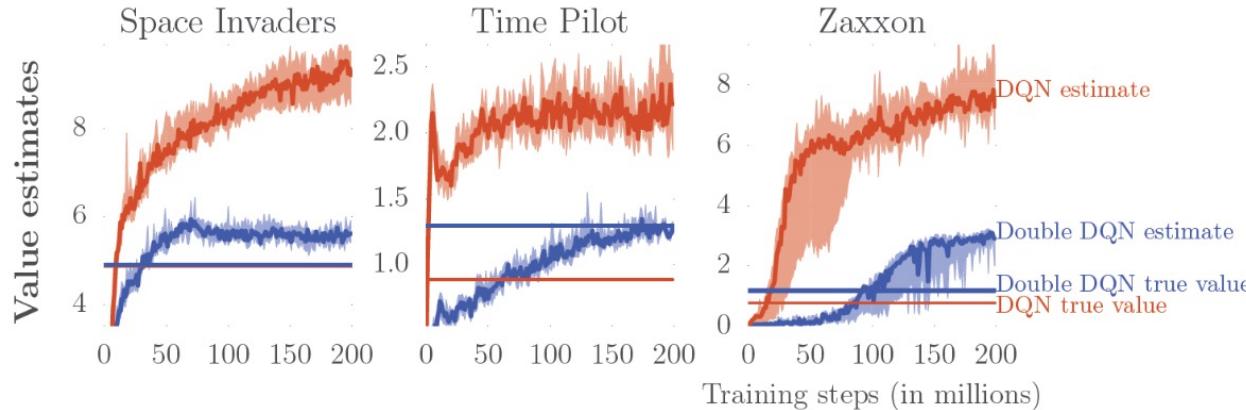
- Uses two separate networks for action selection and value estimation, respectively.

$$\text{DQN} \quad y_t = r_t + \gamma Q_{\theta}(s_{t+1}, \arg \max_{a'} Q_{\theta}(s_{t+1}, a'))$$

$$\text{Double DQN} \quad y_t = r_t + \gamma \boxed{Q_{\theta'}}(s_{t+1}, \arg \max_{a'} Q_{\theta}(s_{t+1}, a'))$$

Experimental results in the Atari environment

Value estimation error

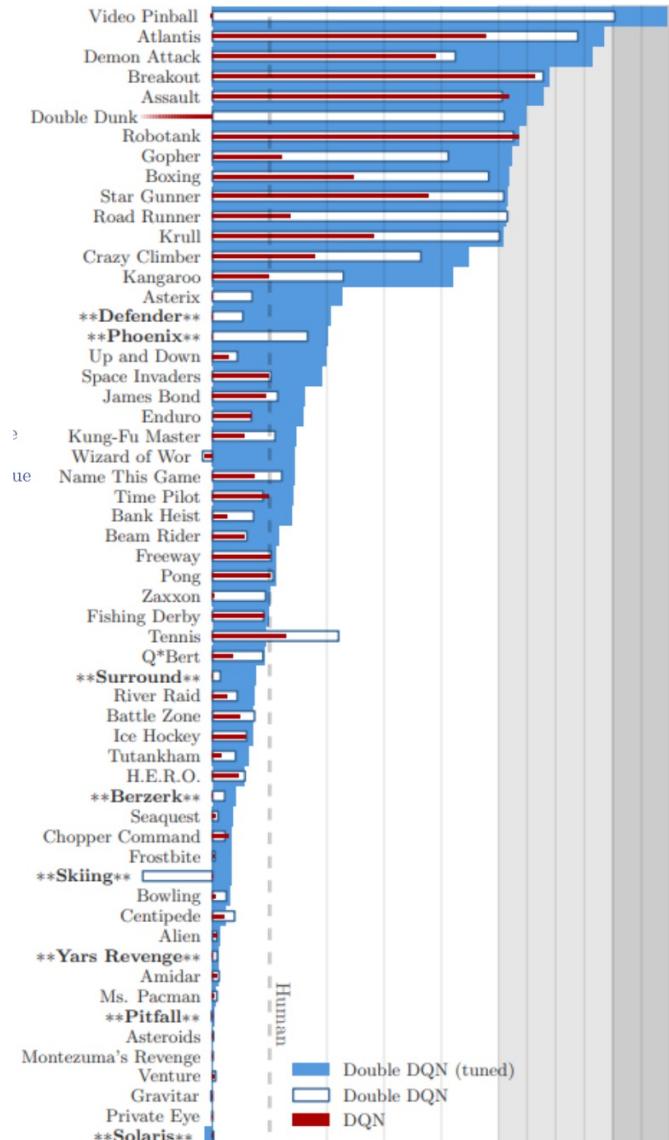


Atari game performance

	no ops		human starts		
	DQN	DDQN	DQN	DDQN	DDQN (tuned)
Median	93%	115%	47%	88%	117%
Mean	241%	330%	122%	273%	475%

normalized performance

$$= \frac{\text{DQN score} - \text{random play score}}{\text{human score} - \text{random play score}}$$



Dueling DQN

- Assume the action-value function follows a distribution:

$$Q(s, a) \sim \mathcal{N}(\mu, \sigma)$$

- Then: $V(s) = \mathbb{E}[Q(s, a)] = \mu$ $Q(s, a) = \mu + \boxed{\varepsilon(s, a)}$

- How do we describe $\varepsilon(s, a)$?

$$\varepsilon(s, a) = Q(s, a) - V(s)$$

- This term is also known as the Advantage function

Dueling DQN (cont.)

- Advantage function

$$A^\pi(s, a) = Q^\pi(s, a) - V^\pi(s)$$

$$Q^\pi(s, a) = \mathbb{E}[R_t | s_t = s, a_t = a, \pi]$$

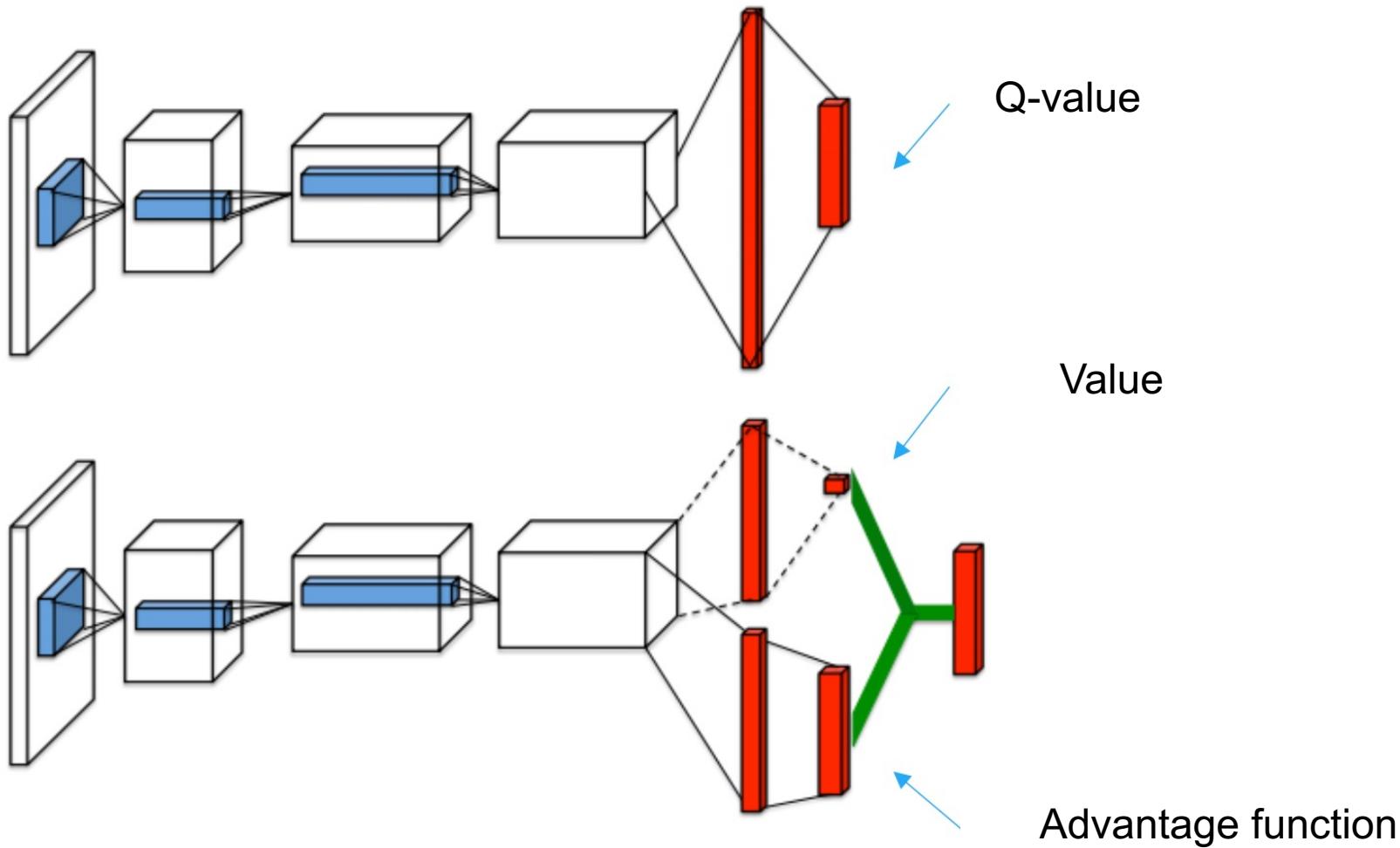
$$V^\pi(s) = \mathbb{E}_{a \sim \pi(s)}[Q^\pi(s, a)]$$

- Different forms of advantage aggregation

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \boxed{(A(s, a; \theta, \alpha) - \max_{a' \in |A|} A(s, a'; \theta, \alpha))}$$

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + \boxed{(A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha))}$$

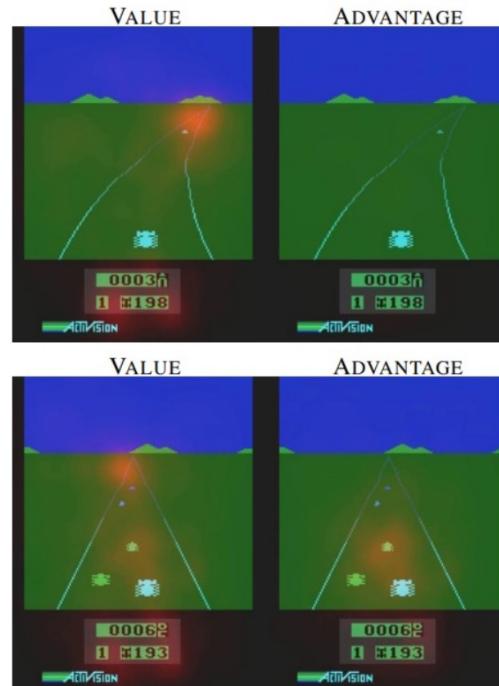
Network structure



Advantages of Dueling DQN

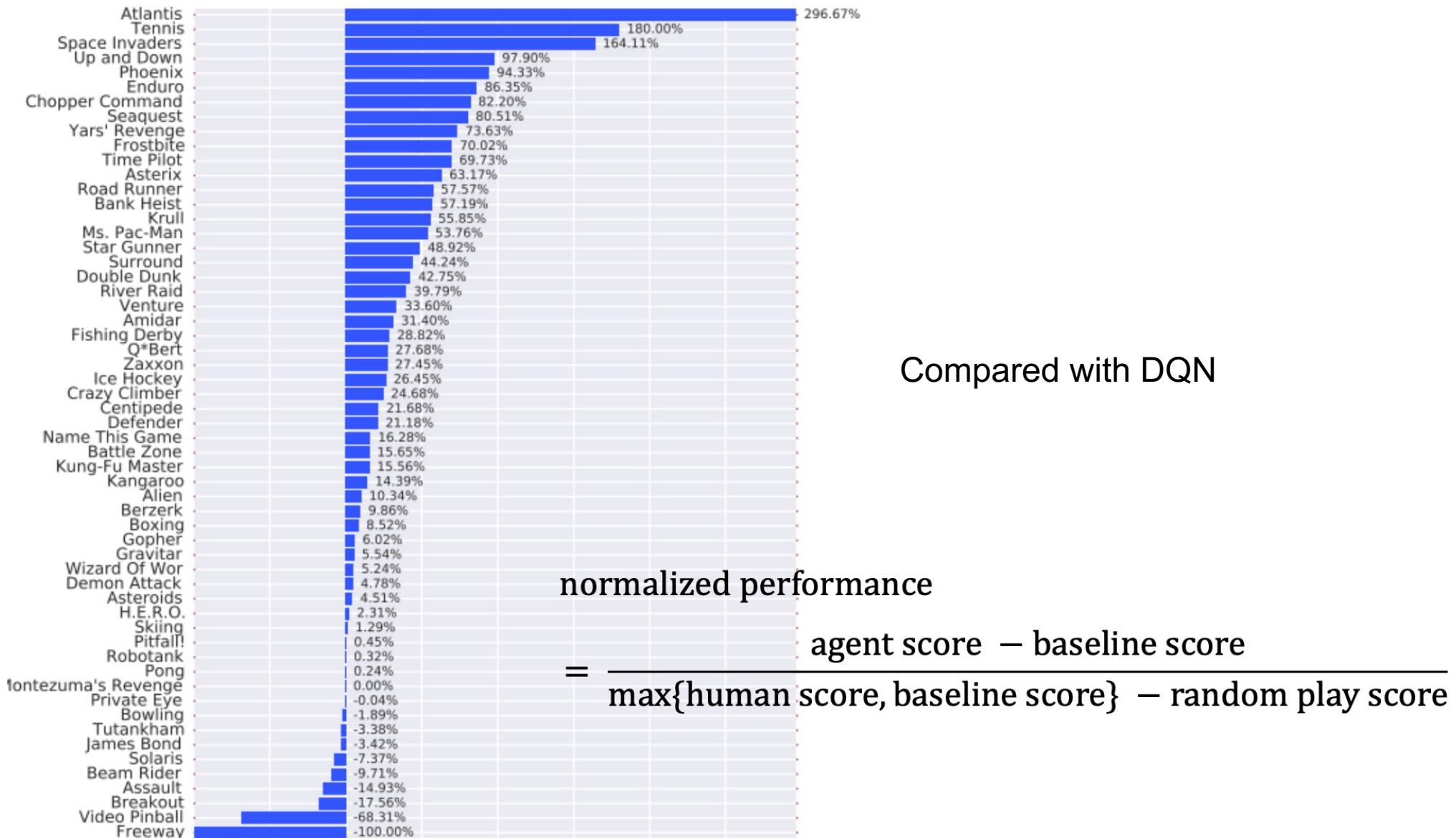
- Effective for states weakly correlated with actions
- More efficient learning of the state-value function
 - The value stream $V(s)$ is shared across all actions, allowing the network to generalize better across actions

saliency maps



- The value stream allows the agent to evaluate how good a state is without considering the specific action taken.
- The advantage stream emphasizes action-specific importance: for instance, it can learn to focus more when an obstacle (e.g., a car) appears in front of the agent, thereby guiding more precise action selection.

Experimental results in the Atari environment I



Experimental results in the Atari environment II

Deep RL – Policy-based methods

Review: The policy gradient theorem

- The policy gradient theorem generalizes the derivation of likelihood ratios to the multi-step MDP setting.
- It replaces the immediate reward r_t with the expected long-term return $Q^\pi(s, a)$.

$$\frac{\partial J(\theta)}{\partial \theta} = \mathbb{E}_{\pi_\theta} \left[\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} Q^{\pi_\theta}(s, a) \right]$$

Policy Gradient in a Single-Step MDP

- Consider a simple single-step Markov Decision Process (MDP)
 - The initial state is drawn from a distribution: $s \sim d(s)$
 - The process terminates after one action, yielding a reward r_{sa}
- Expected Value of the Policy

$$J(\theta) = \mathbb{E}_{\pi_\theta}[r] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_\theta(a|s) r_{sa}$$

$$\frac{\partial J(\theta)}{\partial \theta} = \sum_{s \in S} d(s) \sum_{a \in A} \frac{\partial \pi_\theta(a|s)}{\partial \theta} r_{sa}$$

Policy network gradient

- For stochastic policies, the probability of selecting an action is typically modeled using a softmax function:

$$\pi_{\theta}(a|s) = \frac{e^{f_{\theta}(s,a)}}{\sum_{a'} e^{f_{\theta}(s,a')}}$$

- $f_{\theta}(s, a)$ is a score function (e.g., logits) for the state-action pair
- Parameterized by θ , often realized via a neural network
- Gradient of the log-form

$$\begin{aligned}\frac{\partial \log \pi_{\theta}(a|s)}{\partial \theta} &= \frac{\partial f_{\theta}(s,a)}{\partial \theta} - \frac{1}{\sum_{a'} e^{f_{\theta}(s,a')}} \sum_{a''} e^{f_{\theta}(s,a'')} \frac{\partial f_{\theta}(s,a'')}{\partial \theta} \\ &= \frac{\partial f_{\theta}(s,a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_{\theta}(a'|s)} \left[\frac{\partial f_{\theta}(s,a')}{\partial \theta} \right]\end{aligned}$$

Policy network gradient (cont.)

■ Gradient of the log-form

$$\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} = \frac{\partial f_\theta(s, a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_\theta(a'|s)} \left[\frac{\partial f_\theta(s, a')}{\partial \theta} \right]$$

■ Gradient of the policy network

$$\begin{aligned}
 \frac{\partial J(\theta)}{\partial \theta} &= \mathbb{E}_{\pi_\theta} \left[\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} Q^{\pi_\theta}(s, a) \right] \\
 &= \mathbb{E}_{\pi_\theta} \left[\left(\frac{\partial f_\theta(s, a)}{\partial \theta} - \mathbb{E}_{a' \sim \pi_\theta(a'|s)} \left[\frac{\partial f_\theta(s, a')}{\partial \theta} \right] \right) Q^{\pi_\theta}(s, a) \right]
 \end{aligned}$$

Comparison: DQN v.s. Policy gradient

- **Q-Learning:**

- Learns a Q-value function $Q_\theta(s, a)$ parameterized by θ
- Objective: Minimize the TD error

$$J(\theta) = \mathbb{E}_{\pi'} \left[\frac{1}{2} \left(r_t + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a') - Q_\theta(s_t, a_t) \right)^2 \right]$$

$$\begin{aligned} \theta &\leftarrow \theta - \alpha \frac{\partial J(\theta)}{\partial \theta} \\ &= \theta + \alpha \mathbb{E}_{\pi'} \left[\left(r_t + \gamma \max_{a'} Q_{\theta'}(s_{t+1}, a') - Q_\theta(s_t, a_t) \right) \frac{\partial Q_\theta(s, a)}{\partial \theta} \right] \end{aligned}$$

Comparison: DQN v.s. Policy gradient

- Q-Learning:
 - Learns a Q-value function $Q_\theta(s, a)$ parameterized by θ
 - Objective: Minimize the TD error
- Policy gradient
 - Learns a policy $\pi_\theta(a \mid s)$ directly, parameterized by θ
 - Objective: Maximize the expected return directly

$$\max_{\theta} J(\theta) = \mathbb{E}_{\pi_\theta}[Q^{\pi_\theta}(s, a)]$$

$$\theta \leftarrow \theta + \alpha \frac{\partial J(\theta)}{\partial \theta} = \theta + \alpha \mathbb{E}_{\pi_\theta} \left[\frac{\partial \log \pi_\theta(a|s)}{\partial \theta} Q^{\pi_\theta}(s, a) \right]$$