
Deep Reinforcement Learning

Part of slide credits: Weinan Zhang 

STA303: Artificial Intelligence

Fang Kong

https://fangkongx.github.io/

https://fangkongx.github.io/


Outline

§ Deep RL – Value methods
§ Deep RL – Policy methods



Function approximation for value and policy

§ What if we use deep neural networks directly to approximate 
these functions?



End-to-end reinforcement learning

Traditional computer vision

Deep learning

Traditional RL

Deep RL

§ Deep RL enables RL algorithms to solve complex tasks in an end-to-end manner.
Slide from Sergey Levine. http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-1.pdf



Deep RL

§ New challenges when we combine deep learning with RL?
§ Value functions and policies become deep neural networks
§ High-dimensional parameter space
§ Difficult to train stably
§ Prone to overfitting
§ Requires large amounts of data
§ High computational cost
§ CPU-GPU workload balance

Agent

Environment

Interaction

Data



Value methods: DQN

§ Deep Q-Network (DQN)
§ Uses a deep neural network to approximate Q(s,a) 

§ → Replaces the Q-table with a parameterized function for scalability

§ The network takes state s as input, outputs Q-values for all actions a simultaneously

Volodymyr Mnih, Koray Kavukcuoglu, David Silver et al. Playing Atari with Deep Reinforcement Learning. NIPS 2013 workshop.



DQN (cont.)

§ Intuition: Use a deep neural network to approximate Q(s,a) 
§ Instability arises in the learning process

§ Samples {(s!, 𝑎!, 𝑠!"#, 𝑟!)} are collected sequentially and do not satisfy the i.i.d. 
assumption

§ Frequent updates of Q(s,a) cause instability

§ Solutions: Experience replay
§ Store transitions 𝑒! = s! , 𝑎! , 𝑠!"#, 𝑟! in a replay buffer D

Sample uniformly from D to reduce sample correlation
• Dual network architecture: Use an evaluation network and a target 

network for improved stability

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Target network

§ Target network 𝑄$!(𝑠, 𝑎)
• Maintains a copy of the Q-network with older parameters 𝜃$

• Parameters 𝜃$ are updated periodically (every C steps) to match the evaluation 
network

§ Loss Function (at iteration 𝑖)

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



DQN training procedure

§ Collect transitions using an ε-greedy exploration policy
§ Store {(s! , 𝑎! , 𝑠!"#, 𝑟!)} into the replay buffer

§ Sample a minibatch of 𝑘 transitions from the buffer
§ Update networks:

§ Compute the target using the sampled transitions
§ Update the evaluation network Q$
§ Every C steps, synchronize the target network 𝑄$! with the evaluation 

network

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



DQN performance in Atari games

“Human-Level Control Through Deep Reinforcement Learning”, Mnih, Kavukcuoglu, Silver et al. (2015)



Overestimation in Q-Learning

§ Q-function overestimation
§ The target value is computed as:
§ The max operator leads to increasingly larger Q-values, potentially 

exceeding the true value

§ Cause of overestimation

§ The chosen action might be overestimated due to Q-function error



Degree of overestimation in DQN

§ Overestimation increases with the number of candidate actions

§ A separately trained Q’-function is used as a reference



Overestimation example in DQN

§ Setup: The x-axis represents states, and each plot includes 10 candidate actions. The purple curve denotes the true Q-
value function, the green dots are training data points, and the green lines are the fitted Q-value estimates.

§ The middle column shows the estimated values 𝑄!(𝑠, 𝑎) for all 10 actions. After applying the max operator, the results 
deviate significantly from the true values 𝑄∗(𝑠, 𝑎).



Double DQN

§ Uses two separate networks for action selection and value 
estimation, respectively.

“Double Reinforcement Learning with Double Q-Learning”, van Hasselt et al. (2016)



Experimental results in the Atari environment

§ Value estimation error

§ Atari game performance



Dueling DQN

§ Assume the action-value function follows a distribution:

§ Then:

§ How do we describe 𝜀(𝑠, 𝑎)?

§ This term is also known as the Advantage function 

“Dueling Network Architectures for Deep Reinforcement Learning”, Wang et al. (2016)



Dueling DQN (cont.)

§ Advantage function

§ Different forms of advantage aggregation



Network structure 

§
Q-value

Value

Advantage function



Advantages of Dueling DQN

§ Effective for states weakly correlated with actions
§ More efficient learning of the state-value function

§ The value stream V(s) is shared across all actions, allowing the network 
to generalize better across actions

saliency maps

•The value stream allows the agent to evaluate how good a 
state is without considering the specific action taken.

•The advantage stream emphasizes action-specific importance: 
for instance, it can learn to focus more when an obstacle (e.g., 
a car) appears in front of the agent, thereby guiding more 
precise action selection.



Experimental results in the Atari environment I

Compared with DQN



Experimental results in the Atari environment II

Compared with DQNCompared with Double DQN



Deep RL – Policy-based methods

22



Review: The policy gradient theorem

§ The policy gradient theorem generalizes the derivation of 
likelihood ratios to the multi-step MDP setting.

§ It replaces the immediate reward 𝑟! with the expected long-term 
return 𝑄"(𝑠, 𝑎).



Policy network gradient

§ For stochastic policies, the probability of selecting an action is 
typically modeled using a softmax function:

§ 𝑓+(𝑠, 𝑎) is a score function (e.g., logits) for the state-action pair
§ Parameterized by 𝜃, often realized via a neural network

§ Gradient of the log-form



Policy network gradient (cont.)

§ Gradient of the log-form

§ Gradient of the policy network

Back propagation Back propagation



Comparison: DQN v.s. Policy gradient

§ Q-Learning: 
§ Learns a Q-value function 𝑄$(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error



Comparison: DQN v.s. Policy gradient

§ Q-Learning: 
§ Learns a Q-value function 𝑄!(𝑠, 𝑎) parameterized by θ
§ Objective: Minimize the TD error

§ Policy gradient
§ Learns a policy 𝜋$(𝑎 ∣ 𝑠) directly, parameterized by θ
§ Objective: Maximize the expected return directly


